Самодельные двигатели ролики

Начало темы читайте на старом форуме http://www.sam0delka.com/t19-topic

Многое из тут написанного бред и не стоит верить этому в серьёз
Рассматривать современные моторы под капотами автомобилей – сплошное удовольствие. Какие они мощные, компактные, тихие и экономичные: современный дизель потребляет менее 6 л топлива на 100 км при рабочем объеме 2 л и бешеном крутящем моменте. И все же КПД даже самых технологичных дизельных моторов с технологией Twinturbo не превышает 33%! Атмосферные бензиновые ДВС еще менее эффективны – их КПД с трудом дотягивает до 25%.

Температура газов в камере сгорания четырехтактного ДВС Отто достигает 2000˚С. Внутренние стенки цилиндра и рабочая поверхность поршня нагреваются до 1500˚С. Часть тепловой энергии уходит из камеры сгорания на четвертом такте вместе с выхлопными газами. Чтобы быстро отвести тепло и охладить камеру сгорания до оптимальной температуры, применяется мощная система охлаждения, неисправность которой грозит поломкой двигателя. Перегрев – проклятие автомехаников, работающих с высокооборотными спортивными моторами. Температура внутри кокпита гоночного болида во время заездов достигает 70˚С, а некоторые узлы двигателя раскаляются докрасна. Выходит, что автомобиль куда более эффективен в качестве калорифера, нежели в качестве транспортного средства.

Можно ли заставить избыточное тепло совершать полезную работу, вместо того чтобы отводить его от мотора и рассеивать в атмосфере? 75-летний изобретатель Брюс Кроуэр на практике доказал, что это возможно.

Остатки сладки

По признанию самого Брюса, последние 30 лет он постоянно думал о том, как превратить тепло двигателя во вращение коленчатого вала. Озарение, как это часто бывает, пришло к нему во сне. Брюс решил, что в концепции Отто не хватает еще двух тактов – рабочего и холостого. Но источником энергии для них должна служить не очередная порция топливовоздушной смеси, а избыточная температура! В качестве рабочего тела он применил простую воду. При атмосферном давлении вода, превращаясь в пар, увеличивает свой объем в 1600 раз и обладает колоссальной энергией. В двигателе Кроуэра вода впрыскивается в камеру сгорания в виде мельчайших капелек под давлением около 150 атм., когда заканчивается четвертый такт цикла Отто и поршень возвращается в исходное положение. Попадая на раскаленную поверхность поршня и гильзы цилиндра, вода превращается в пар и толкает поршень вниз, совершая рабочий пятый такт. На шестом такте отработанный пар удаляется из камеры сгорания через выпускной клапан. Таким образом Кроуэр заставляет уже сгоревшее топливо еще раз совершить полезную работу, используя его «тепловой фантом». Эту концепцию изобретатель назвал Steam-o-Lene.

ИзображениеИзображение

Цикл Кроуэра отличается от традиционного цикла Отто не только количеством тактов, но и отношением количества рабочих тактов к их общему числу. Так, у Отто это отношение составляет 1:4, а у Кроуэра – 1:3, дополнительные 40% полезной работы совершаются на неизменном количестве топлива. На четвертом такте раскаленные выхлопные газы не удаляются из камеры сгорания полностью, а сжимаются поршнем, создавая очень высокое давление. Вода в такой среде испаряется быстрее и равномернее. Далее отработанный пар поступает в конденсатор, где охлаждается и снова превращается в воду. Часть остаточного тепла используется для обогрева салона автомобиля.

Снег – знак победы

Брюсу не терпелось проверить свою идею на практике. В его домашнем гараже давно стоял одноцилиндровый дизельный мотор, переделанный под бензин. Его-то он и решил использовать для проверки гипотезы. Мотор получил новый распределительный вал под два «лишних» такта и модернизированную систему впрыска. Ненужная дизельная форсунка была приспособлена под впрыск воды, а вентилятор системы охлаждения для «чистоты» эксперимента отсоединен. Когда, наконец, все было готово, Брюс присоединил к топливному тракту два бачка – с бензином и чистой дождевой водой, рванул тросик стартера, и двигатель заработал. Через пару секунд на ошарашенного Брюса откуда-то сверху начал падать «снег». Это были кусочки белой краски, отвалившиеся от потолка из-за направленного вверх открытого выпускного коллектора, извергавшего горячий пар вперемежку с выхлопными газами. Мотор нормально работал больше часа, но его можно было спокойно касаться руками – он был едва теплым!

Целый год после этого Брюс Кроуэр экспериментировал с различными настройками газораспределения и впрыска воды. И только наверняка убедившись, что концепция Steam-o-Lene работоспособна, он приступил к оформлению патента. Любопытно, что идея шеститактного ДВС с впрыском воды в цилиндры еще за 90 лет до Брюса Кроуэра пришла в голову некоему Леонарду Дайеру из штата Коннектикут. Дайер даже запатентовал свое изобретение в 1920 году, но за все эти годы никто из автопроизводителей им так и не заинтересовался. В 2007 году патентное ведомство США признало приоритет за Брюсом Кроуэром.

Паровые перспективы

Преимущества Steam-o-Lene перед традиционными четырехтактными ДВС очевидны. Во-первых, радикально решается проблема эффективного охлаждения внутренних стенок камеры сгорания и специальная система охлаждения весом более 100 кг оказывается не у дел. Отсутствие радиатора позволяет дизайнерам уменьшить коэффициент аэродинамического сопротивления кузова автомобиля за счет отказа от воздухозаборников и решетки радиатора. А это один из самых существенных факторов, влияющих на расход топлива при скоростях выше 60 км/ч.

Во-вторых, внутреннее охлаждение позволяет существенно, на 30–50%, форсировать двигатели по степени сжатия, избежав при этом детонации. Степень сжатия для бензиновых модификаций может быть увеличена до 14–16:1, а для дизельных – до 25–35:1. Это резко повышает эффективность сгорания топливовоздушной смеси (на 40% по сравнению с циклом Отто), тем самым улучшая экологические характеристики двигателя. Размеры и масса мотора могут быть снижены без ущерба для динамики авто.

Два рабочих такта из шести в цикле Кроуэра позволяют значительно снизить скорость вращения коленвала и получить ровную и насыщенную «полку» крутящего момента с самых низких оборотов. Steam-o-Lene может отлично работать на низкокачественном дешевом топливе без антидетонационных присадок. Топливом могут служить биоэтанол, дизель, природный газ и даже топочный мазут. Относительно низкий температурный режим в камере сгорания резко снижает образование вредной двуокиси азота. А между тем системы фильтрации и нейтрализации двуокиси азота в современных автомобилях весьма дорогостоящи. Брюс также предполагает, что горячий пар может предотвращать появление нагара на клапанах и стенках камеры сгорания, очищая их во время «парового» такта подобно пароочистителю. Но для подтверждения этого эффекта требуются длительные испытания прототипа.

Концепция 6-тактного Steam-o-Lene с «паровым» рабочим тактом может быть модифицирована и дополнена за счет углубленного исследования термодинамики процесса. Брюсу кажется перспективной установка на двигатель турбокомпаунда – системы, в которой вслед за турбиной нагнетателя в выпускном тракте следует силовая турбина, сообщающая дополнительный крутящий момент коленчатому валу двигателя посредством гидромуфты. Турбокомпаунд мог бы повысить эффективность работы двигателя еще на 10–15%. Некоторые специалисты, анализировавшие концепцию 6-тактного ДВС с впрыском воды, отмечают, что теоретически возможны даже два последовательных паровых такта. Если это подтвердится в ходе испытаний, то Steam-o-Lene может стать уже 8-тактным и еще более экономичным.

Ложка дегтя

Разумеется, концепция Кроуэра не лишена недостатков. Основная проблема – это замерзание воды зимой. Добавление антифриза может негативно сказаться на эффективности испарения и экологических параметрах двигателя. Проблему могла бы решить термоизоляция водяного резервуара и его предварительный подогрев от аккумулятора. Но как быть, если автомобиль длительное время находится на открытом воздухе?

Другая проблема – необходимость установки на автомобиле дополнительного оборудования для хранения и конденсации воды. Правда, масса его обещает быть незначительной: в рабочем контуре пар и вода будут находиться при атмосферном давлении и максимальной температуре чуть более 100˚С, что позволяет использовать вместо металла легкие пластмассы. Не исключено, что часть воды будет попадать в моторное масло и это потребует установки специального сепаратора для ее отделения. Впрочем, давно отработанные технологии смазки паровых турбин для нужд энергетики имеют целый ряд готовых решений этой проблемы. Для изготовления клапанов, поршня и гильзы цилиндра, скорее всего, потребуются нержавеющие материалы, в частности керамика.

Steam-o-Lene не может работать полноценно сразу после запуска – ему нужно время для разогрева рабочих поверхностей камеры сгорания до 450–500˚С. Несколько минут он работает как обычный 4-тактный ДВС, а затем переходит на полный рабочий цикл. Перед остановкой мотор тоже должен некоторое время поработать в 4-тактном режиме для полного удаления пара из цилиндра. Разумеется, вода должна быть дистиллированной: при использовании обычной на седле клапана со временем образуется твердая накипь, обладающая высокими абразивными свойствами. При серийном производстве двигателей цикла Кроуэра придется наладить целую инфраструктуру производства и реализации дистиллированной воды.

Историческая справка

Вопрос о применении воды в качестве охлаждающей и антидетонационной присадки к топливу был детально исследован еще в 30-х годах прошлого века в СССР, Германии и Соединенных Штатах

Теплоэнергетика и сельское хозяйство

Технология получила широкое применение в теплоэнергетике и эксплуатации корабельных силовых установок. А на Харьковском тракторном заводе в 1930-х годах выпускалась модель трактора с системой впрыска воды в цилиндры. Его создатели были впоследствии репрессированы «за вредительство» – из-за того что при эксплуатации вместо дистиллированной воды нерадивые трактористы заливали в резервуар простую техническую воду. Больше в СССР желающих рисковать головой не нашлось. Зато на Западе в 1930–1940-х годах впрыск воды в ДВС завоевал огромную популярность как простой и эффективный способ повышения мощности и снижения детонации.

Водяной форсаж авиадвигателей

Технология широко применялась во время Второй мировой войны в радиальных авиационных двигателях американских и немецких самолетов для кратковременного форсажа. Системой впрыска воды оснащались авиамоторы Daimler Benz серии 605 и BMW 801D для Messerschmitt Bf 109, Junkers Jumo 213 A1 для FockeWulf 190D, Pratt & Whitney J57 для американского B-29 Stratofortress и многие другие. Вода добавлялась в уже готовую смесь, охлаждая ее, и попадала вместе с ней в камеру сгорания. От контакта с раскаленной поверхностью поршня и стенок цилиндра вода мгновенно превращалась в пар, который помогал рабочим газам толкать поршень. Предварительное охлаждение топливовоздушной смеси позволяло увеличить ее объем на впрыске и повышало эффективность сгорания топлива. Впоследствии воду заменили специальной смесью MW-50, состоящей из равных частей воды и метанола, тем самым увеличив мощность двигателей на 25–30%. Автопроизводители, в частности Chrysler, также применяли этот метод для увеличения мощности и снижения детонации на моделях с моторами большого объема. Saab, компания с авиационными корнями, устанавливала систему впрыска воды на скоростном Saab 99 Turbo S вплоть до начала 1980-х годов. С появлением интеркулеров, охлаждающих воздух перед впрыском в цилиндры, применение воды в автомобильных моторах потеряло актуальность.

Живая легенда

Брюс Кроуэр уже более шестидесяти лет занимается совершенствованием двигателей внутреннего сгорания. В 20 лет Брюс открыл собственную мастерскую по подготовке двигателей для автогонок. В 1954 году он установил рекорд скорости в одном из классов автомобилей на соляных озерах Бонневиля. Брюсу так и не хватило времени получить диплом инженера, но он с лихвой компенсировал недостаток знаний богатейшей практикой. Изобретатель в одиночку сумел построить уникальный восьмицилиндровый оппозитный двигатель Crower 8 с оригинальным автоматическим узлом сцепления для гоночных болидов серии «Индианаполис». Всю работу, от инженерных расчетов до стендовых испытаний, он проделал своими руками. В 1977 году Общество автомобильных инженеров (SAE) отметило Crower 8 почетной премией Луиса Швитцера за выдающиеся инновации. В Америке имя Кроуэра давно стало нарицательным – знаменитые тюнинговые распредвалы Crower уже десятки лет используются многими профессиональными и любительскими гоночными командами, а особые титановые шатуны Crower Special закупают даже знаменитые «конюшни» «Формулы-1». Джон Колетти, долгое время руководивший спортивным подразделением компании Ford Motors SVT, так охарактеризовал Кроуэра: «Брюс – это инженер и изобретатель, обладающий огромным опытом и интуицией. Он не боится браться за трудные задачи и всегда нацелен на успех. Именно это и отличает его от большинства людей, которые из-за страха потерпеть неудачу предпочитают следовать за трендом».

Принципиальная схема BMW Turbosteamer

Четыре года назад компания BMW представила свою версию парового гибрида
Немецкие инженеры оставили на месте систему охлаждения двигателя и добавили в конструкцию ряд сложных вспомогательных компонентов, в том числе теплообменник, отбирающий тепловую энергию выхлопных газов, герметичный паровой котел и паровую турбину, связанную с коленчатым валом двигателя ременным приводом. По утверждению разработчиков, использование «парового двигателя» Turbosteamer дает прирост мощности и крутящего момента на 10% и экономию топлива около 15%. Вес дополнительных компонентов превышает 100 кг. Инженерное решение Steam-o-Lene выглядит намного изящнее немецкого: вместо усложнения системы Кроуэр предлагает ее максимальное упрощение. Шеститактный Steam-o-Lene легче своего четырехтактного аналога даже с учетом массы воды и конденсатора. Немецкая разработка, напротив, увеличивает общий вес двигателя. Наконец, заявленный прирост эффективности Turbosteamer в два с половиной раза ниже, чем у Steam-o-Lene: 15% против 40.

--------------------------------------------------------------------------------------------------------------------------------------------------

Аммиачно паровой двигатель.

В аммиачно паровом двигателе рабочим телом является аммиачный пар. Удельная теплота парообразования указанного рабочего тела в 539 раз меньше, чем у воды. Поэтому упрощается процесс утилизации тепла отработанного пара. А КПД аммиачно парового двигателя на 24 % выше, чем у традиционной паровой машины.

Аммиачно паровой процесс хорошо освоен в промышленности. Уже более 80 лет работают холодильники на аммиачных парах (бытовые холодильники выпускаются с 1928 г, именно этого типа, как наиболее простые). Но, как известно, в холодильниках процесс идет без преобразования тепловой энергии в механическую. В аммиачно паровом двигателе использован процесс, основанный на особенностях сжатия и расширения парообразного аммиака.

Аммиачно паровой двигатель имеет малый удельный вес, вместе с парообразователем не более 1,2 кг/л.с., т.е. такой же, как и у карбюраторных автомобильных моторов.

Удельный расход топлива у аммиачно парового двигателя ниже, чем у дизельного мотора и составляет всего 1,6 кг/л.с.

Аммиачно паровой двигатель может использоваться для транспортных средств, а так же как стационарный для привода электрогенераторов различной мощности.

«Снова пар?» — статью под таким названием «ТМ» опубликовала почти 30 лет назад. И вот, оказывается, тема эта не только не устарела, но даже приобрела еще большую актуальность.
— Как же, помню блистательную статью Германа Смирнова, — оживился мой собеседник. — Она и послужила затравкой, вызвавшей кристаллизацию собственной идеи...
И далее в разговоре с Юрием Васильевичем Макаровым, ныне кандидатом технических наук, старшим научным сотрудником МАИ и изобретателем с многолетним стажем, прояснилась вот какая история.
Почему, по вашему, паромобили, столь успешно конкурировавшие на заре века с электромобилями и автомобилями, бившие мировые рекорды скорости, затем были вынуждены сойди с арены? Правильно, они потребляли в 2-3 раза больше топлива, чем машины с двигателями внутреннего сгорания. Потому, кстати, и на железной дороге на смену паровозам пришли тепловозы и электровозы.
Эта известная со школьных лет истина ничуть не обескуражила изобретателя, решившего использовать паровую машину в... авиации! «Не забывайте, — напоминает Макаров, — самолет Можайского был оснащен именно ею.

Рис, 1. Аммиачно-паровой двигатель. Цифрами обозначены: 1 — корпус паро-генератора(нагревателя); 2 — насыщенный раствор аммиака; 3 — теплоизоляция парогенератора; 4 — тепловой экран; 5 — воздушный промежуток; 6 — зеркальный экран; 7 — термоизоляция; 8 — горелка; 9 — змеевик; 10 — входной патрубок; 11 - тракт воздухозаборника; 12 — воздухозаборник; 13 — лопасти вентилятора; 14 — радиатор; 15 — патрубок вентилятора; 16 — выхлопная труба; 17 — прямой канал выхлопной трубы; 18 — изогнутое колено выхлопной трубы; 19 — трубопровод перегретого аммиака; 20 — блок цилиндров; 21 — корпус двигателя; 22 — золотник; 23 — ось пропеллера; 24 — пропеллер;25 — выходной аммиакопровод; 26 — расширитель; 27 — корпус расширителя и абсорбера; 28 — термоизоляция; 29 — абсорбер; 30 — разделительная стенка между расширителем и абсорбером; 31 — патрубки расширителя; 32 — грубо -провод, подающий аммиачный раствор в радиатор; 33 — трубопровод; 34 — насосы; 35 — помпа подачи топлива; 36— шкив вентилятора; 37 — заслонка. 38,39 — тяги заслонки; 40 — двигатель управления заслонкой; 41 — электродвигатель помпы; 42 — электрогенератор; 43,44 — датчики системы регулирования; 45 — свеча зажигания; 46 -аккумулятор; 47 — клапан, через который добавляют аммиак в случае егс аварийной утечки; 48 — топливный бак.
И сказав первое слово в авиации, паровая машина еще не сказала последнего».
Такой ход мысли, согласитесь, граничит если нес абсурдом, то, по крайней мере, с парадоксом. Впрочем, Макаров все разъяснил достаточно логично.Не удивительно, что бывший мор ской офицер Можайский ислользова в своей конструкции паровую машину -других в то время, по существу, еще и было. И тот факт, что она дольше всег продержалась на флоте, вполне закс номерен. Ведь наилучшим образо) она проявляет свои достоинства пр повышении выходной мощности, а судоходстве нередко требуются мош ности в десятки, а то и сотни тысяч лс шадиных сил и киловатт. По той ж причине весьма неплохо чувствуют се бя паровые турбины и на тепловы электростанциях, на АЭС... Кроме то го, такая силовая установка «всеядна> может использовать практически лю бое топливо — от дров до термо яда.А ее тяговые характеристики во обще уникальны. На паромобилях, примеру, не было коробки передач -такого «обкорнания» не выдержит т один двигатель внутреннего сгорания а паровому все нипочем...
Конечно, сказанное вовсе не значт что претензий ни к судовым, ни к ста ционарным паровым установкам ни ' кого нет. Их еще предостаточно. И одн; из основных — значительное количе ство тепла по-прежнему «вылетает I трубу».
Повысить КПД можно двумя путями Во-первых, все больше увеличива5 температуру и давление пара, прибе гают к разного рода утилизаторам тепла. Но тут, похоже, уже подошли к технологическому пределу: применение закритического давления пара (240 — 250 атм.) с температурами свыше 500°С требует, помимо прочего, использования специальных сталей и сплавов, включая титановые. Что заметно удорожает саму установку. Оттого-то в последние десятилетия делается заметный акцент на второй путь — замену воды в паровых котлах на более подходящие жидкости.
А список их, таких жидкостей, достаточно обширен. Здесь и этиловый эфир, и хлороформ, и сернистый углерод, и аммиак... Иногда используют даже низкотемпературные расплавы на основе лития.
Макаров остановил свой выбор на аммиаке. «У него есть одна интересная особенность, — пояснил изобретатель. — Он легко растворяется в воде — о нашатырном спирте, видимо, все знают». И набросал график, из которого следовало, что, скажем, при нуле градусов в одном объеме воды растворяется аж 1176 объемов аммиака. С ростом температуры, правда, такая способность падает. Но это, как вы вскоре убедитесь, даже к лучшему.
Итак, каким же образом работает аммиачно-паровой двигатель? Взгляните на рис. 1. С помощью свечи зажигания воспламеняется горелка, топливо в которую поступает из бака. Причем, если используется жидкое горючее, скажем, мазут, его предварительно подкачивают ручным насосом (на схеме не показан). При использовании же сжижженного или сжатого природного газа, такая подкачка не требуется — он будет подаваться из бака избыточным давлением. Ну а в принципе

нагреватель(парогенератор) может работать на любом топливе (угле, торфе, дровах или ядерном горючем) — для этого потребуется лишь соответствующая его доработка.
Перед запуском двигателя специальной заслонкой перекрывается прямой канал выхлопной трубы: горячие газы от горелки идут по колену трубопровода, который погружен в насыщенный водный раствор аммиака; он с помощью насоса подается из абсорбера в корпус парогенератора. Температура жидкости, понятное дело, начинает повышаться.При этом аммиак, содержащийся в ней, выделяется и через трубку заборника поступает в змеевик нагревателя, обогреваемый той же горелкой. Если в растворе, при подогреве его, аммиак имел температуру 45 — 50° С, то в змеевике — 650° С.
Этот перегретый пар устремляется через золотник в цилиндры, и двигатель начинает работать на холостых оборотах, приводя в действие вентилятор, который нагнетает воздух в нагреватель.
Температура воды в парогенераторе постепенно повышается до 90 — 95°С, что обеспечивает давление паров аммиака порядка 40 атм. Двигатель выходит на рабочий режим и далее автоматически поддерживает его. Этому в немалой степени способствует тепловой экран сферической формы и дополнительный зеркальный экран, отставленный от него на некоторый воздушный промежуток. Кроме того, установленные датчики температуры воды и пара выдают периодические сигналы в систему автоматического управления, регулирующую тепловой режим. При перегреве сокращается подача топлива в горелку и приоткрывается створка прямого канала выхлопной трубы, сбрасывающей излишек тепла в атмосферу; при недостатке же тепла, наоборот, увеличивается подача топлива, а заслонка закрывается.
В общем, согласно расчетам Макарова, уже через 1,5 — 3 мин двигатель должен быть готов к работе при максимальной нагрузке.
Прошедший через его цилиндры пар, совершив полезную работу, охлаждается до 20 — 30° С и давление его снижается до 5 атм. Затем он попадает в расширитель, где давление его уменьшается до 1,8 атм., а температура, согласно законам физики, соответственно падает до -18° С.
Переохлажденный аммиак отбирает тепло у стенок расширителя и накапливается в абсорбере. Происходит типичный процесс, как, скажем, у абсорбционного холодильника типа «Север-6», «Иней», «Морозко» и т.д. И в абсорбере устанавливается порядка -6° С.
Естественно, при понижении температуры растворимость аммиака в воде резко возрастает. Поэтому поступающий из двигателя газ тут же поглощается жидкостью. По мере того, как беднеет аммиаком смесь в парогенераторе, часть его откачивается насосом из абсорбера в парогенератор. Цикл таким образом замыкается.
Проведенные Ю.В.Макаровым расчеты показывают, что такой двигатель обладает рядом преимуществ, по сравнению и с традиционной паровой машиной, и с двигателем внутреннего сгорания. При той же мощности, он компактнее на 40 — 60%, имеет более высокий КПД ( порядка 43,5% экономический и около 85% механический), расходует меньше соляра, чем, скажем, дизель... Даже на моторном масле, которого новый двигатель требует значительно меньше обычного, можно получить многомиллионную экономию. И это в ценах еще 1978 г., когда Макаров «пробивал» свое изобретение. Ныне же, наверное, надо говорить о триллионах рублей, расходуемых понапрасну.
Итак, получено авторское свидетельство № 1455114. Ну а что было дальше? Тут наша история приобретает настолько тривиальный характер, что даже рассказывать не хочется — тома переписки со всевозможными государственными, полугосударственными и частными оранизациями, фондами, институтами и предприятиями, в попытках если уж не внедрить, то хотя бы довести изобретение до испытаний. Но воз, как говорится, и ныне там...
В общем, ситуация вполне типичная для нашей страны. И о том, возможно, не стоило бы писать отдельно, если бы не один нюанс, зависящий, как говорится, от человеческого фактора. Вот типичный пример. Как донесли зарубежные средства массовой информации, в мире бизнеса недавно произошел из ряда вон выходящий случай. Всемогущая Сепега! Е1ест.пс — фирма, организованная 105 лет назад самим Эдисоном и с той поры считавшая, что нигде нет ничего такого, чего не могли бы изобрести ее сотрудники, — сделала первое исключение из собственных правил. Она купила лицензию на чужое изобретение, отвалив за нее... 250 млн долларов!
Новоявленного мультимиллионера зовут Александр Калина, он бывший наш соотечественник, выпускник Института холодильной промышленности в Одессе. А предложенный им «цикл Калины» позволяет сразу на 25% повысить КПД любой тепловой электростанции. Причем это изобретение было сделано давно, еще в СССР, где, кроме того, он получил около 90 авторских свидетельств.
Для реализации одного из его изобретений — капсульного трубопровода — инстанции решили создать даже целый НИИ. Подыскали помещение, назначили директора, заместителей и т.п., а про самого автора как-то «забыли», И вспомнили лишь тогда, когда он заскандалил, обнаружив, что в ходе переписки с патентным ведомством количество соавторов изобретения, неожиданно для него, пополнилось пятью фамилиями.Разумеется, руководителей того самого НИИ.
Изобретатель обиделся и эмигрировал. А институт пришлось вскоре прикрыть, ввиду полной бесполезности его сотрудников.
За границей Калина начал все сначала. Там, впрочем, ему было отнюдь не легче, чем тут. Но у него уже был опыт. И за 15 лет, объездив полмира, он все-таки сумел найти людей, поверивших в перспективность его давнишней идеи, одолживших деньги на ее реализацию. В декабре 1992 г. Калина закончил неподалеку от Лос-Анджелеса строительство опытной станции. По проводам от нее пошло самое дешевое в мире электричество, а изобретатель, как уже говорилось, стал богачом.Убытки же России составили при этом сотни миллиардов. И не рублей, а долларов...
Не произойдет ли нечто подобное и с «циклом Макарова»? И пока такого не случилось, быть может, стоит повторить опыт Калины на отечественной почве? Создать акционерное общество, дать изобретателю возможность доказать перспективность его разработки на практике, а потом торговать лицензиями по всему миру, не особенно стесняясь в цене.

Рис. 2. Газотурбинный двигатель с аммиачно-паровым циклом. Цифрами обозначены: 1 — парогенератор; 2 — насыщенный раствор аммиака; 3 — корпус парогенератора; 4 — газовая камера турбины; 5 — форсунка; 6 — воздухозаборник; 7 — сопло; 8 — змеевик; 9 — свеча зажигания; 10 — аккумулятор; 11— заборный патрубок; 12 — ам-миакопровод; 13 — радиатор; 14 — ось пропеллера; 15 — пропеллер; 16 — золотник; 17 — трубопровод; 18 — расширитель;19 — корпус расширителя и абсорбера; 20 — термоизоляция; 21 — абсорбер; 22 — перегородка между расширителем и абсорбером; 23 — патрубки расширителя; 24,25 — трубопроводы; 26 — радиатор; 27 — насосы; 28 —помпа;29 — топливный бак; 30 — топливопровод; 31 — система автоматического регулирования; 32,33 — датчики системы автоматического регулирования; 34 — клапан для восполнения аммиака при аварийной утечке.


Закрыть ... [X]

Самодельные двигатели Стирлинга МОПЕДИСТ. ру - клуб любителей Предметы украшенные росписью

Самодельные двигатели ролики Двигатель на воде своими руками - Двигатели на разном топлеве
Самодельные двигатели ролики Энциклопедия Технологий и Методик - Самодельный гриндер
Самодельные двигатели ролики Электромотор своими руками - энциклопедия самоделок
Самодельные двигатели ролики Самодельный двигатель Видео на Запорожском портале
Самодельные двигатели ролики Мотор для самодельного Видео! - t-Видео сёрфинг
Самодельные двигатели ролики Экспериментальные двигатели Форум
Самодельные двигатели ролики 100 профессий, связанных с путешествиями - Счастье на просвет
Duolingo: Учим языки бесплатно Отзывы покупателей Виды узоров резинка Вышивка по льну советы и схемы - Интернет-магазин ИзоЛьна. ру Декор мебели в технике декупаж своими руками - дайте старой Дизайн кухни 2017 новинки: изучаем тренды, что модно, советы Как делать педикюр в домашних условиях: пошаговое выполнение Как связать собаку хаски крючком Вязание для начинающих Книга по бисероплетению, очередная / Бисер / Украшения из бисера Плетение кос самой себе - m